

Laboratório 2 – IS-IS

TOPOLOGIA

O laboratório que vamos trabalhar possui a seguinte topologia:

Os IPs das interfaces já estão previamente configurados.

PARTE 1 – ÁREA 1

1.1 – ESTABELECIMENTO DE VIZINHANÇA IS-IS E TROCA DE ROTAS

Nesta etapa, vamos estabelecer vizinhança IS-IS entre os roteadores R-1, R-2 e R-3.

- 1. Ligar os roteadors R-1, R-2 e R-4.
- 2. Abrir terminal do R-1, entrar no modo de configuração (system-view), configurar o processo IS-IS, definir o nível do roteador, network-entity e alterar cost-style para wide.

```
<R1>system-view

[R1]isis 1

[R1-isis-1]is-level level-1-2

[R1-isis-1]network-entity 49.0001.0100.9909.9001.00

[R1-isis-1]cost-style wide
```

3. Habilitar IS-IS nas interfaces que se comunicam com roteadores da área 1.

interface GigabitEthernet0/0/0
[R1-GigabitEthernet0/0/0]isis enable 1
[R1-GigabitEthernet0/0/0]interface GigabitEthernet0/0/2
[R1-GigabitEthernet0/0/2]isis enable 1
[R1-GigabitEthernet0/0/2]interface LoopBack0

```
[R1-LoopBack0]isis enable 1
```


- 4. Abrir terminal do R-2 e realizar as configurações do IS-IS conforme feito no R-1. Se atentar à diferença de network-entity.
- 5. Verificar se vizinhança foi estabelecida. Observar que foram criados dois peers com o R-1, um de nível 1 e outro de nível 2.

[R2]display isis peer

Peer	informat	ion	for	ISIS(1)
TOOL	THEOTHORD	TOTT	TOT	TOTOV	<u> </u>

System Id	Interface	Circuit Id	State	HoldTime	Туре	PRI
0100. 9909. 9001	GE0/0/0	0100. 9909. 9002. 0	l Up	24s	L1 (L1L2)	64
0100. 9909. 9001	GE0/0/0	0100. 9909. 9002. 0	L Up	29s	L2 (L1L2)	64

Total Peer(s): 2

6. Visualizar tabela de rotas do roteador e verificar que R2 aprendeu a loopback do R1 via IS-IS.

[R2]d:	isplay	ip	routing-	table)		
Route	Flags:	R	- relay,	D -	download	to	fib

Routing Tables: Pub Destinatio	lic ns : 9		Routes :	9		
Destination/Mask	Proto	Pre	Cost	Flags	NextHop	Interface
10. 10. 0. 0/30	Direct	0	0	D	10. 10. 0. 2	GigabitEthernet0/0/0
10. 10. 0. 2/32	Direct	0	0	D	127. 0. 0. 1	GigabitEthernet0/0/0
10. 11. 11. 0/30	ISIS-L1	15	20	D	10. 10. 0. 1	GigabitEthernet0/0/0
10. 11. 11. 4/30	Direct	0	0	D	10. 11. 11. 5	GigabitEthernet0/0/2
10. 11. 11. 5/32	Direct	0	0	D	127. 0. 0. 1	GigabitEthernet0/0/2
10. 99. 99. 1/32	ISIS-L1	15	10	D	10. 10. 0. 1	GigabitEthernet0/0/0
10. 99. 99. 2/32	Direct	0	0	D	127. 0. 0. 1	LoopBack0
127. 0. 0. 0/8	Direct	0	0	D	127. 0. 0. 1	InLoopBack0
127.0.0.1/32	Direct	0	0	D	127.0.0.1	

7. Verificar tabela de rota do IS-IS. Observar que foi criada uma tabela para rotas nível 1 e uma outra para rotas nível 2.

[R2]disp	isis	route
----------	------	-------

Route information for ISIS(1)

ISIS(1)	Level-1	Forwarding	Table
---------	---------	------------	-------

IPV4 Destination	IntCost	ExtCost	ExitInterface	NextHop	Flags
10. 99. 99. 2/32	0	NULL	Loop0	Direct	D/-/L/-
10. 11. 11. 0/30	20	NULL	GE0/0/0	10. 10. 0. 1	A/-/L/-
10.99.99.1/32	10	NULL	GE0/0/0	10. 10. 0. 1	A/-/L/-
10. 10. 0. 0/30	10	NULL	GE0/0/0	Direct	D/-/L/-
10. 11. 11. 4/30	10	NULL	GE0/0/2	Direct	D/-/L/-
Flags: D-Direct,	, A-Added t	o URT, L	-Advertised in 1	LSPs, S-IGP Short	cut,

U-Up/Down Bit Set

ISIS(1) Level-2 Forwarding Table

IPV4 Destination	IntCost	ExtCost	ExitInterface	NextHop	Flags
10. 99. 99. 2/32	0	NULL	Loop0	Direct	D/-/L/-
10. 11. 11. 0/30	20	NULL			
10.99.99.1/32	10	NULL			
10. 10. 0. 0/30	10	NULL	GE0/0/0	Direct	D/-/L/-
10. 11. 11. 4/30	10	NULL	GE0/0/2	Direct	D/-/L/-
Flags: D-Direct,	A-Added to	o URT, L [.]	-Advertised in L	SPs, S-IGP Short	cut,
	1	U-Up/Down	n Bit Set		

8. Abrir terminal do R-4 e realizar as configurações do IS-IS conforme feito no R-1 e R-2. Se atentar à diferença de network-entity e que se trata de um roteador nível 1.

9. Verificar estabelecimento de vizinhança do R-4 com os outros dois roteadores. Verificar também LSDB que contém apenas LSPs de nível 1.

[R-4]display	isis	peer	
--------------	------	------	--

	Peer info	ormation for ISIS	(1)			
System Id	Interface	Circuit Id	State	HoldTime	Туре	PRI
0100. 9909. 9001 0100. 9909. 9002	GE0/0/0 GE0/0/1	0100. 9909. 9004. 02 0100. 9909. 9004. 02	l Up 2 Up	30s 25s	L1 L1	64 64

Total Peer(s): 2

[R-4]display isis 1sdb

Database information for ISIS(1)

Level-1 Link State Database

LSPID	Seq Num	Checksum	Holdtime	Length	ATT/P/OL
0100. 9909. 9001. 00-00	0x00000007	0x2399	1030	103	0/0/0
0100. 9909. 9002. 00-00	0x0000005	0xa40d	1030	103	0/0/0
0100. 9909. 9002. 01-00	0x00000001	0x6974	397	54	0/0/0
0100.9909.9004.00-00*	0x0000005	0x6131	1049	103	0/0/0
0100.9909.9004.01-00*	0x00000001	0x6f6c	1049	54	0/0/0
0100.9909.9004.02-00*	0x00000001	0x7f5a	1047	54	0/0/0

Total LSP(s): 6

```
*(In TLV)-Leaking Route, *(By LSPID)-Self LSP, +-Self LSP(Extended),
ATT-Attached, P-Partition, OL-Overload
```

10. Visualizar tabela de rotas do R-4 e verificar se está aprendendo a loopback de R-1 e R-2.

11. Testar conectividade a partir do R-4 para R-1, forçando IP de origem a própria loopback com destino a loopback do R-1.

[R-4]ping -a 10.99.99.4 10.99.99.1

PING 10.99.99.1: 56 data bytes, press CTRL_C to break

Reply from 10.99.99.1: bytes=56 Sequence=1 ttl=255 time=80 ms

Reply from 10.99.99.1: bytes=56 Sequence=2 ttl=255 time=40 ms

Reply from 10.99.99.1: bytes=56 Sequence=3 tt1=255 time=30 ms

Reply from 10.99.99.1: bytes=56 Sequence=4 ttl=255 time=10 ms

Reply from 10.99.99.1: bytes=56 Sequence=5 ttl=255 time=50 ms

--- 10.99.99.1 ping statistics --5 packet(s) transmitted
5 packet(s) received
0.00% packet loss
round-trip min/avg/max = 10/42/80 ms

1.2 – TIPO DE REDE BROADCAST E POINT-TO-POINT

Nesta etapa, vamos verificar as diferenças entre tipos de rede Broadcast e Point-to-Point.

1. No peer entre R-1 e R-4 verificar que o R-4 foi escolhido como DIS.

[R1] display isis interface

		Interface informa	tion for ISIS(1)	
Interface	Id	IPV4. State	IPV6.State	MTU Type DIS
GE0/0/0	001	Up	Down	1497 L1/L2 No/No
GE0/0/2	002	Up	Down	1497 L1/L2 No/No
Loop0	001	Up	Down	1500 L1/L2 -
T		Interface informa	tion for ISIS(1)	
Interface	Id	IPV4. State	IPV6. State	MTU Type DIS
GE0/0/0	001	Up	Down	1497 L1/L2 Yes/No
GE0/0/1	002	Up	Down	1497 L1/L2 Yes/No
Loop0	001	Up	Down	1500 L1/L2 -

2. Em seguida, vamos aumentar a prioridade da interface de R-1 (padrão 64) que se comunica com R-4 para que R-1 se torne o DIS nesta comunicação.

[R1] interface GigabitEthernet0/0/2

[R1-GigabitEthernet0/0/2]isis dis-priority 100

[R1] display isis interface

3. Verificar novamente R-1 e R-4 e se houve alteração do DIS. Por ser preemptivo, observamos que o DIS é alterado logo após aumentarmos a prioridade da interface.

Interface	Id	IPV4. State	IPV6.State	MTU	Туре	DIS
GE0/0/0	001	Up	Down	1497	L1/L2	No/No
GE0/0/2	002	Up	Down	1497	L1 /L2	Yes/No
Loop0	001	Up	Down	1500	L1/L2	-

		Interface information	for ISIS(1)	
Interface	Id	IPV4. State	IPV6. State	MTU Type DIS
GE0/0/0	001	Up	Down	1497 L1/L2 No/No
GE0/0/1	002	Up	Down	1497 L1/L2 Yes/No
Loop0	001	Up	Down	1500 L1/L2

4. Vamos agora alterar o tipo de rede das interfaces de R-1 para point-to-point. Realizar o mesmo procedimento para as interfaces dos roteadores R-2 e R-4.

[R1] interface GigabitEthernet0/0/0

[R1-GigabitEthernet0/0/0] isis circuit-type p2p

[R1-GigabitEthernet0/0/0]

 $[R1-GigabitEthernet0/0/0] interface \ GigabitEthernet0/0/2$

[R1-GigabitEthernet0/0/2] isis circuit-type p2p

5. Verificar que redes não possuem mais DIS por serem poin-to-point.

[R1]display isis interface

		Interface inform	nation for ISIS(1)			
Interface	Id	IPV4. State	IPV6. State	MTU	Туре	DIS
GE0/0/0	002	Up	Down	1497	L1/L2	
GE0/0/2	003	Up	Down	1497	L1/L2	
Loop0	001	Up	Down	1500	L1/L2	

1.3 – QUEDA DE INTERFACE E MANIPULAÇÃO DE CUSTO

Nesta etapa, vamos simular quedas de interface e realizar manipulação de custo da interface.

1. No R-4, dar um traceroute para a loopback de R-1 e verificar o caminho direto sendo utilizado. [R-4] tracert -a 10.99.99.4 10.99.99.1

traceroute to 10.99.99.1(10.99.99.1), max hops: 30 ,packet length: 40,press CT RL_C to break

1 10.11.11.1 30 ms 50 ms 40 ms

2. Desativar a interface de R-4 que se comunica com R-1 e testar novamente o traceroute. Verificamos que o tráfego passa a ser encaminhado para R-2.

[R-4]interface GigabitEthernet0/0/0 [R-4-GigabitEthernet0/0/0]shutdown [R-4-GigabitEthernet0/0/0]tracert -a 10.99.99.4 10.99.99.1

traceroute to 10.99.99.1(10.99.99.1), max hops: 30 , packet length: 40, press CTRL_C to break

1 10.11.11.5 80 ms 20 ms 40 ms

2 10.10.0.1 100 ms 60 ms 60 ms

3. Reativar a interface e verificar o tráfego voltando a utilizar a comunicação direta R-4 > R-1. [R-4-GigabitEthernet0/0/0]undo shutdown [R-4-GigabitEthernet0/0/0]tracert -a 10.99.99.4 10.99.99.1

traceroute to 10.99.99.1(10.99.99.1), max hops: 30 , packet length: 40, press CTRL_C to break

1 10.11.11.1 80 ms 50 ms 30 ms

4. Aumentar o custo da interface de R-4 que se comunica com R-1 e verificar o tráfego sendo encaminhado através de R-2.

[R-4]interface GigabitEthernet0/0/0 [R-4-GigabitEthernet0/0/0]isis cost 21 [R-4-GigabitEthernet0/0/0]tracert -a 10.99.99.4 10.99.99.1

traceroute to 10.99.99.1(10.99.99.1), max hops: 30 , packet length: 40, press CTRL_C to break

1 10.11.11.5 30 ms 50 ms 50 ms

2 10.10.0.1 30 ms 40 ms 50

- 5. A partir do R-1, dar um tracert para loopback de R-4. Verificar que permanece utilizando o link direto.
- 6. Aumentar o custo da interface de R-1 que se comunica com R-4 e verificar tráfego agora sendo encaminhado através de R-2.

[R1]interface GigabitEthernet 0/0/2 [R1-GigabitEthernet0/0/2]isis cost 21 [R1-GigabitEthernet0/0/2]tracert -a 10.99.99.1 10.99.99.4

traceroute to 10.99.99.4(10.99.99.4), max hops: 30 , packet length: 40, press CTRL_C to break

1 10.10.0.2 60 ms 30 ms 70 ms

2 10.11.11.6 140 ms 90 ms 90 ms

PARTE 2 – ÁREA 2

Nesta etapa, vamos configurar a Área 2 e verificar o comportamento do IS-IS.

Configurar roteadores R-1 e R-2 para que se comuniquem via IS-IS com R-3.
 [R1]interface GigabitEthernet0/0/1
 [R1-GigabitEthernet0/0/1]isis enable 1
 [R1-GigabitEthernet0/0/1]isis circuit-type p2p

2. Ligar R-3 e realizar as configurações do IS-IS. Se atentar à diferença de network-entity (pertence à área 2) e que se trata de roteador nível 2.

```
[R3]isis 1
[R3-isis-1]is-level level-2
[R3-isis-1]network-entity 49.0002.0100.9909.9003.00
[R3-isis-1]cost-style wide
[R3-isis-1]quit
[R3] interface GigabitEthernet0/0/0
[R3-GigabitEthernet0/0/0]isis enable 1
[R3-GigabitEthernet0/0/0] is is circuit-type p2p
[R3-GigabitEthernet0/0/0] interface GigabitEthernet0/0/1
[R3-GigabitEthernet0/0/1]isis enable 1
[R3-GigabitEthernet0/0/1] isis circuit-type p2p
[R3-GigabitEthernet0/0/1] interface GigabitEthernet0/0/2
[R3-GigabitEthernet0/0/2]isis enable 1
[R3-GigabitEthernet0/0/2] isis circuit-type p2p
[R3-GigabitEthernet0/0/2]interface LoopBack0
[R3-LoopBack0] isis enable 1
```


3. Ligar R-5 e realizar as configurações do IS-IS. Se atentar à diferença de network-entity (pertence à área 2) e que se trata de roteador nível 2.

4. Verificar se comunicação IS-IS subiu com todos vizinhos.

[R3]display isis peer

Peer information for ISIS(1)

System Id	Interface	Circuit Id	State	HoldTime	Туре	PRI
0100. 9909. 9001	GE0/0/0	0000000004	Up Up	22s	L2	
0100. 9909. 9002 0100. 9909. 9005	GE0/0/2	0000000004	Up	205 25s	L2 L2	

Total Peer(s): 3

[R-5]display isis peer

Peer information for ISIS(1)

System Id	Interface	Circuit Id	State	HoldTime	Туре	PRI
0100. 9909. 9003	GE0/0/0	000000003	Up	24s	L2	

Total Peer(s): 1

5. Testar conectividade do R-5 para R-4. Deverá já ter comunicação devido a troca de rotas IS-IS. [R-5]ping -a 10.99.99.5 10.99.99.4

```
PING 10.99.99.4: 56 data bytes, press CTRL_C to break
Reply from 10.99.99.4: bytes=56 Sequence=1 tt1=253 time=190 ms
Reply from 10.99.99.4: bytes=56 Sequence=2 tt1=253 time=100 ms
Reply from 10.99.99.4: bytes=56 Sequence=3 tt1=253 time=110 ms
Reply from 10.99.99.4: bytes=56 Sequence=4 tt1=253 time=130 ms
Reply from 10.99.99.4: bytes=56 Sequence=5 tt1=253 time=130 ms
```


6. Verificar tabela de rotas do IS-IS no R-5, deverá constar todas as rotas da topologia por se tratar de roteador nível 2.

HUAWEI

7. Verificar tabela de rotas do IS-IS no R-4. Nota-se que ele não conhece as rotas de R-5 porém aprendeu uma rota-default originada pelos roteadores nível 1-2 da área 1.

[R-4]display isis route

Route information for ISIS(1)

ISIS(1) Level-1 Forwarding Table

IPV4 Destination	IntCost	ExtCost	ExitInterfac	e NextHop	Flags				
0. 0. 0. 0/0	10	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-				
10. 10. 0. 4/30	30	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-				
10. 99. 99. 2/32	10	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-				
10. 11. 11. 0/30	21	NULL	GE0/0/0	Direct	D/-/L/-				
10. 99. 99. 1/32	20	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-				
10. 10. 0. 0/30	20	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-				
10. 10. 0. 8/30	20	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-				
10. 11. 11. 4/30	10	NULL	GE0/0/1	Direct	D/-/L/-				
10.99.99.4/32	0	NULL	Loop0	Direct	D/-/L/-				
Flags: D-Direc	t, A-Added	to URT, L	-Advertised i	n LSPs, S-IGP Shor	tcut,				
	U-Up/Down Bit Set								

PARTE 3 – VAZAMENTO DE ROTAS

Nesta etapa, faremos com que os roteadores R-1 e R-2 vazem rotas específicas de nível 2 para nível 1.

1. No R-1, criar ip-prefix contendo a lista de rotas de desejamos vazar. Dentro do processo IS-IS, importar rotas nível 2 para nível 1 definindo a ip-prefix criada anteriormente para limitar quais rotas serão vazadas. No R-2, o procedimento será o mesmo.

[R1]ip ip-prefix 1 permit 10.99.99.0 24 greater-equal 24 less-equal 32
[R1]isis 1
[R1-isis-1] import-route isis level-2 into level-1 filter-policy ip-prefix 1

2. No R-4, verificar que agora está recebendo rotas dos roteadores R-3 e R-5. [R-4] display isis route

Route information for ISIS(1)

IPV4 Destination	IntCost	ExtCost	ExitInterfac	ce NextHop	Flags		
0. 0. 0. 0/0	10	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-		
10. 10. 0. 4/30	30	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-		
10. 99. 99. 3/32	20	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/U		
10. 99. 99. 2/32	10	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-		
10. 11. 11. 0/30	21	NULL	GE0/0/0	Direct	D/-/L/-		
10. 99. 99. 1/32	20	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-		
10. 10. 0. 0/30	20	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-		
10. 10. 0. 8/30	20	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/-		
10. 11. 11. 4/30	10	NULL	GE0/0/1	Direct	D/-/L/-		
10. 99. 99. 5/32	30	NULL	GE0/0/1	10. 11. 11. 5	A/-/-/U		
10. 99. 99. 4/32	0	NULL	Loop0	Direct	D/-/L/-		
Flags: D-Direct	, A-Added	to URT, L	-Advertised i	in LSPs, S-IGP Shor	tcut,		
U-Up/Down Bit Set							

ISIS(1) Level-1 Forwarding Table

PARTE 4 – AUTENTICAÇÃO

Nesta etapa, vamos configurar autenticação de pacotes IS-IS para aumentar segurança do protocolo.

No R-1, configurar autenticação de pacotes na interface que se comunica com R-4.
 [R1]interface GigabitEthernet0/0/2
 [R1-GigabitEthernet0/0/2]isis authentication-mode md5 fiberx

2. No R-4, desabilitar e habilitar interface que se comunica com R-1 e verificar se peer será estabelecido.

- [R-4]interface GigabitEthernet0/0/0
- [R-4-GigabitEthernet0/0/0] shutdown
- [R-4-GigabitEthernet0/0/0]undo shutdown

[R-4-GigabitEthernet0/0/0]display isis peer

Peer information for ISIS(1)

System Id	Interface	Circuit Id	State	HoldTime	Туре	PR
0100. 9909. 9002	GE0/0/1	0000000002	Up	28s	L1	

Total Peer(s): 1

3. Configurar autenticação no R-4 usando a mesma chave e verificar se peer será estabelecido.

Peer information for ISIS(1)						
System Id	Interface	Circuit Id	State	HoldTime	Туре	PRI
0100. 9909. 9001 0100. 9909. 9002	<mark>GE0/0/0</mark> GE0/0/1	000000002 0000000002	<mark>Up</mark> Up	<mark>28s</mark> 27s	L1 L1	

Total Peer(s): 2

